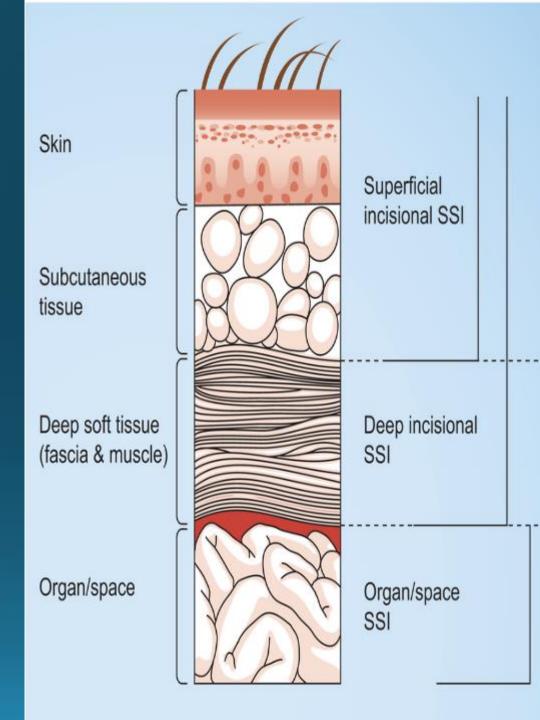
Wound Challenges in Colorectal Surgery

Techniques to reduce SSI in colorectal Surgery


Overview

- Introduction to SSI
 - Definitions
 - Causes
- Three ways to reduce SSI in colorectal surgery
 - Prophylactic antibiotics
 - Wound protectors
 - Bowel preparation

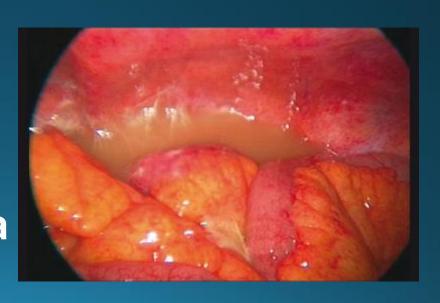
Definitions and Causes

Definition of SSI

- Surgical site infection:
 Defined by CDC in 1992
- SSI includes three 'diagnoses'
- >Incisional infection
 - Superficial incisional SSI
 - Deep incisional SSI
- **▶** Space infection
 - Peritoneal cavity: Intraperitoneal infection (with or without AL)

Microbiology of SSI

- In comparison to most other operations, in colorectal surgery there are two sources of contamination
- SKIN
 - Staphylococcus (STA), Streptococcus (STE)
- COLON: Polymicrobial...
- 1. Gram negatives
 - E coli, Klebsiella, Proteus
 - Pseudomonas
- 2. Anaerobes: Bacteroides fragilis
- 3. Enterococcus faecalis



Microbiology of SSI

- □Incisional:
- ➤ If skin source: STA or STE
- >If colon source: Polymicrobial
- ➤ Both: STA, Gram negatives, anaerobes

- ☐ Space: Polymicrobial
- >Anaerobes: Abscesses
- ➤ Gram negative bacteria: Septicaemia

Risk factors for SSI - Microbiology

- •All about the bacteria
- Contamination of the wound (>105 organisms)
- > Bacterial Virulence
- Resistance of bacteria within the hospital
- Number of days in hospital before surgery
- > [wound classification]

Risk factors for SSI – the Patient

- •All about the immune system
- ► How well is the patient: ASA grade (I-V)
- Reduced blood supply: Obesity, diabetes, smoking
- > Reduced immunity:
 - Medical conditions: Metastatic cancer, diabetes, malnutrition, renal failure, liver failure, Haematological malignancy
 - Medications: Steroids, chemotherapy, immune modulators

Risk factors for SSI – Surgical factors

- •All about the surgery
- >Urgency of surgery
- > Skin preparation
- ➤ Minimising contamination (wound classification)
- > Duration of surgery
- Tissue handling (keeping tissue healthy, Haemostasis...)

Classification of surgical wounds

Category	Criteria	Infection rate
Clean		1-5%
Clean-Contaminated	Hollow viscus entered	5-8%
	No inflammation	
Contaminated	Spillage from viscus	15-25%
	Inflammation present	
Dirty	Established infection (Pus)	40%
	Severe inflammation	

Example

- 483 patients at Dunedin Hospital
- Wound infection rate approximately 9%

Wound Classification	ASA I, II	ASA III, IV, V
Clean	2/49 (4.1)	4/52 (7.7)
Clean-contaminated	5/75 (6.7)	5/37 (13.5)
Contaminated	7/95 (7.4)	7/48 (14.6)
Dirty	2/17 (11.8)	4/9 (44-4)

SSI Risk Score

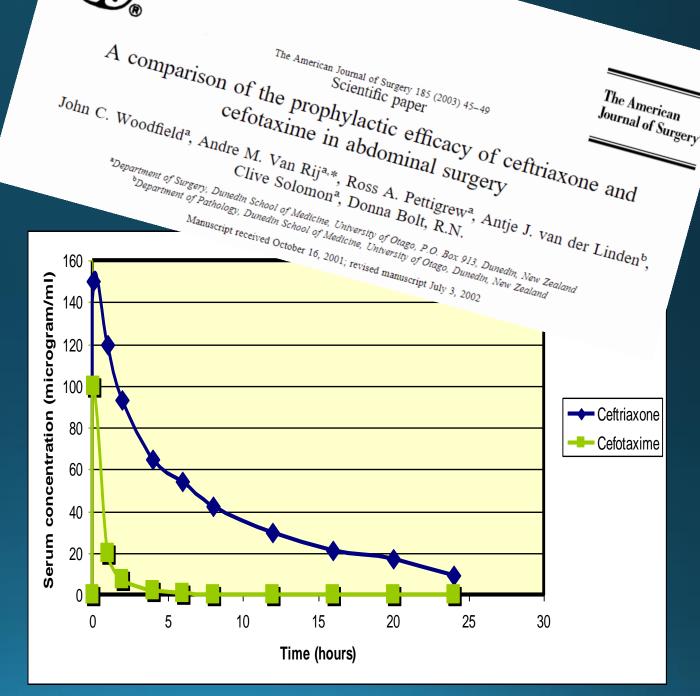
SSI Risk Score (AUC 0.80) is generated from the following information

- **>**Smoker
- >BMI
- ➤ History of PVD, metastatic cancer
- ➤ Sepsis in last 2 days
- >Steroids in last 10 days
- >Acute of elective surgery
- > Wound type: Clean, clean/contaminated, contaminated, dirty
- >ASA grade
- **≻**Operation code
- ➤ More than one procedure
- Duration of surgery

[http://www.ohri.ca/SSI_risk_index/Default.aspx]

Reducing SSI Prophylactic antibiotics

Principles of prophylactic antibiotic use


- When 'prophylactic' antibiotics were first given to prevent infection after surgery they didn't seem to work. This was because they were not given the correct way...
- Important principles
- > Timing of antibiotic administration
- Correct antibiotic cover: MIC 90
- ➤ Penetration (TPI): Achieving high doses of antibiotic into the wound

Antibiotic cover

- □Empirical cover against expected pathogens
- ➤ MIC90 = the concentration of antibiotic that inhibits 90% of the relevant bacteria
- ☐ In colorectal surgery this means providing good cover for both gram negative and anaerobic bacteria
- >33 RCT were performed in the 1980's to confirm this!
- Usually this will include metronidazole to cover anaerobes and another antibiotic to cover aerobic bacteria (for example a 2nd generation cephalosporin)

Penetration

- The antibiotic needs to get into the wound to treat the contamination
- In a RCT at Dunedin comparing two antibiotics with a similar MIC 90 against bacterial pathogens, the one with the best tissue penetration had better outcomes.

Medica

Timing

- Burke & Classen
- There needs to be an effective concentration of antibiotic in the wound when contamination occurs and when the wound is closed/sealed

Time of administration	% with SSI	Odds Ratio
Early (>2hrs before incision)	3.8	1.8-10.4
Preoperative (<2 hrs before incision)	0.6	
Perioperative (<2 hours after incision)	1.4	0.6-7.4
Postoperative (>2 hours after incision)	3-3	2.4-13.8

Timing

- Usually give IV antibiotic at induction of anaesthesia
- Extra dose for long procedures (>2 to 3 hours)
- In colorectal surgery doses starting the day before surgery, or prolonged antibiotics after surgery do not prevent SSI
- Longer courses of antibiotics are only given to treat established infection

Impact of Prophylactic antibiotics

Category	SSI Without AB's	SSI With AB's
Clean	1-5%	2%
Clean-Contaminated	5-8%	4%
Contaminated	15-25%	6%
Dirty	40%	8%

Similar methods of diagnosing infection...