
SSI in colorectal Surgery

Microbiology and definitions

Definition of SSI

- Surgical site infection:
 Defined by CDC in 1992
- SSI includes three 'diagnoses'
- >Incisional infection
 - Superficial incisional SSI
 - Deep incisional SSI
- > Space infection
 - Intraperitoneal infection (with or without AL)

Microbiology of SSI

- In comparison to most other operations, in colorectal surgery there are two sources of contamination
- SKIN
 - Staphylococcus (STA), Streptococcus (STE)
- COLON: Polymicrobial...
- Gram negatives
 - E coli, Klebsiella, Proteus
 - Pseudomonas
- Anaerobes
- Enterococcus faecalis

Microbiology of SSI

- □Incisional:
- ➤ If skin source: STA or STE
- ➤ If colon source: Polymicrobial
- ➤ Both: STA, ECO, anaerobes

- ☐Space: polymicrobial
- >Anaerobes: Deep abscesses
- ➤ Gram negative bacteria: Septicaemia

Risk factors for SSI

- Microbiology: Bacteria
 - Contamination of the wound (>105 organisms), virulence and resistance, days in hospital before surgery
- Patient factors: Host defence
 - How well is the patient: ASA grade (I-V)
 - Other risk factors: Obesity, diabetes, smoking, metastatic cancer, medical conditions and medications causing immunosuppression, malnutrition, age
- Surgical factors
 - Urgency of surgery, duration of surgery, Skin preparation, infective pathology, minimising contamination, handling of tissue (keeping tissue healthy), good haemostasis, (sutures)

Risk factors for SSI

Likely one slide for each of the three 'contributors' to infection

Risk factors for SSI

Study on ASA v Wound contamination

CATEGORY	CRITERIA	INFECTION RATE
Clean	No hollow viscus entered	1%-3%
	Primary wound closure	
	No inflammation	
	No breaks in aseptic technique	
	Elective procedure	
Clean-contaminated	Hollow viscus entered but controlled	5%-8%
	No inflammation	
	Primary wound closure	
	Minor break in aseptic technique	
	Mechanical drain used	
	Bowel preparation preoperatively	
Contaminated	Uncontrolled spillage from viscus	20%-25%
	Inflammation apparent	
	Open, traumatic wound	
	Major break in aseptic technique	
Dirty	Untreated, uncontrolled spillage from viscus	30%-40%
	Pus in operative wound	
	Open suppurative wound	
	Severe inflammation	

Classification of surgical wounds

Likely a couple of slides + pictures

SSI Risk Score

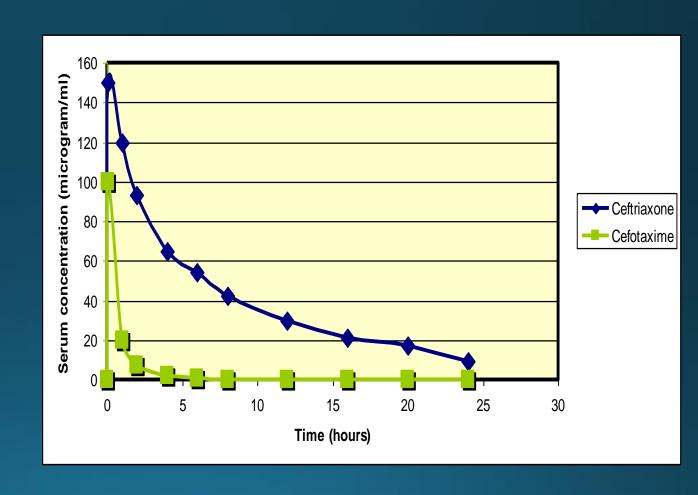
SSI Risk Score (AUC 0.80) is generated from the following information

- > Smoker
- >BMI
- ➤ History of PVD, metastatic cancer
- > Sepsis in last 2 days
- >Steroids in last 10 days
- >Acute of elective surgery
- > Wound type: Clean, clean/contaminated, contaminated, dirty
- >ASA grade
- **≻**Operation code
- ➤ More than one procedure
- > Duration of surgery

[http://www.ohri.ca/SSI_risk_index/Default.aspx]

Reducing SSI Prophylactic antibiotics

Principles of prophylactic antibiotic use


- Antibiotic cover: MIC 90
- Penetration: Achieving high doses of antibiotic into the wound
- Timing of antibiotic administration

Antibiotic cover

- □Empirical cover against expected pathogens
- □MIC90 = the concentration of antibiotic that inhibits 90% of the relevant bacteria
- In colorectal surgery good this includes providing good cover for aerobic and anaerobic bacteria
- >33 RCT performed in 1980's which proved this 'time and time again'
- ➤ Usually this will include metronidazole to cover anaerobes and another antibiotic to cover aerobic bacteria (1^s or 2nd generation cephalosporin often used)

Penetration

- The antibiotic needs to be in the wound to treat the contamination
- RCT ceftriaxone + Met and cefotaxime + Met
- >MIC 90 very similar
- > Penetration different
- > Different outcomes

Timing

- Burke & Classen
- There needs to be an effective concentration of antibiotic in the wound when contamination occurs and when the wound is closed/sealed

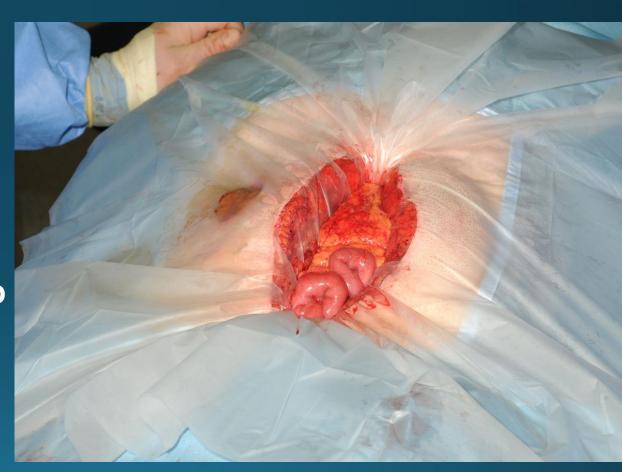
Time of administration	% with SSI	Odds Ratio
Early (>2hrs before incision)	3.8	1.8-10.4
Preoperative (<2 hrs before incision)	0.6	
Perioperative (<2 hours after incision)	1.4	0.6-7.4
Postoperative (>2 hours after incision)	3-3	2.4-13.8

Timing

- Usually give IV antibiotic at induction of anaesthesia
- Extra dose for long procedures (>2 to 3 hours)
- Doses starting the day before surgery, or prolonged antibiotics after surgery do not prevent infection
- Longer courses of antibiotics are usually in the setting of preoperative infection (such as complicated diverticulitis)

Outcomes

Table for wound contamination and ISSI with and without antibiotics

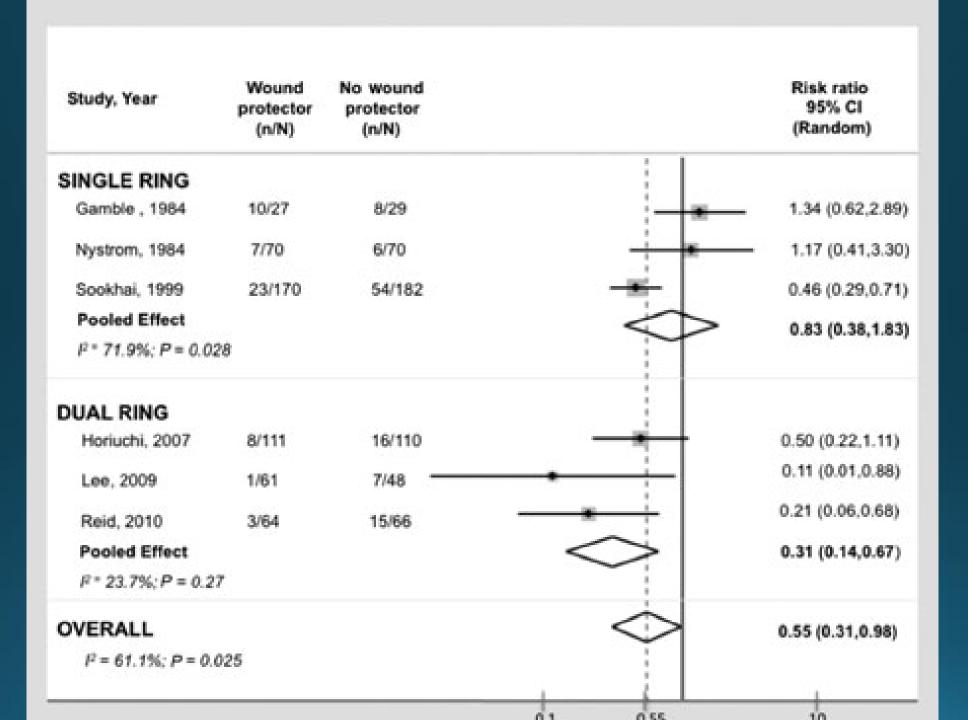

Reducing SSI Wound protectors

Wound protection

- Protect wound edges from contamination
- Protect wound edges from trauma
- Maintain wound physiology: Keep the wound edges moist/warm

Wound protection: Conflicting data

- Initial design: Single ring
- Initial 'consecutive' studies and unblinded RCT's promising
- High quality RCTs: no difference
- ROSSINI study 2013
 - Blinded RCT in 21 UK hospitals, 760 patients having a laparotomy
 - 24.7% SSI infection with wound protector
 - 25.4% SSI in the control group



Single v Double rings

- Meta-analysis of RCT assessing role of wound protectors to reduce SSI after GI and biliary surgery
- Ann Surg 2012
- Medline, Embase, Cochrance
- 347 studies identified
- 6 RCT's included
- 1008 patients, Risk of SSI 0.55 (0.31-0.98), p=0.04

Double Ring RCT: Colorectal

- RCT in elective open colorectal surgery, Australia
- Randomised to dual ring protector v standard care
- Blinded assessment of ISSI
- 130 patients
- Reduction in ISSI from 22.7%(15/66) to 4.7% (3/64), p=0.004
- 78% of SSI dx after discharge from hospital
- 7 of 8 surgeons found the dual ring to be useful for retraction