Clinical experience with Microdacyn® wound care in recalcitrant wounds of the head and neck

Felix Mariano, Jr.
RCN IV MN; PGDip; BSc Nursing
Clinical Nurse Educator
Clinical Nurse Specialist
ORL Head and Neck Surgery
Auckland City Hospital
fmariano@adhb.govt.nz
Miracle Water?
Clinical experience with Microdacyn® wound care in recalcitrant wounds of the head and neck

• J Johnston, F Mariano, R Jain, R Douglas

Disclosures and conflicts of interest:
• None

Financial disclosures:
• This study was supported by a grant from the Garnett Passe and Rodney Williams Foundation
Retrospective cohort study

- Head and Neck Wounds
- OCF / PCF/ NCF
- Infected donor sites
- Post I & D
- Infected Cavity
- Radiotherapy burns
Assessment

- Location and aetiology
- Level of exudate and type
- Wound bed
- Peri-wound / edge
- Pain score
- Comfort / satisfaction
• 35 patients
• 25 M 10 F
• Inpatient – 25/35 (71.42%)
• Outpatients – 10/35 (28.57%)
• 8/26 – Orocutaneous / Pharyngocutaneous fistula (OCF / PCF)

Duration of treatment – 11.5 days
Data

• Infection
 – 26/35 (74.28%)

• Level of exudate
 – Low 4/35 (11.42%)
 – Moderate 14/35 (40%)
 – Heavy 17/35 (48.57%)

• Erythematous peri-wound / edge
 – 28/35 (80%)

• Antibiotics – 18/35 (51.42%)
Microdacyn

- Antibacterial
- Antifungal
- Antiviral
- Anti-inflammatory
- Anti Allergenic
Microdacyn – Mode of Action
Super Oxidised Solution

1. Disruption of the cell wall

Microdacyn surrounds single-celled microorganisms. Super Oxidised Solution attacks the cell wall of the microorganisms and increases its permeability. Since our body’s own cells have the necessary processes to prevent cell damage, they are not destroyed.

2. Osmolysis – bursting of the cells

The hypertonic Microdacyn solution ensures that water increasingly flows into the cells to equalize the osmotic gradient. The increasing internal pressure causes the cells to burst. This purely physical effect ensures a highly effective reduction in pathogen load.
HOW MICROCYN WORKS

1. Application of electricity

2. Negatively charged hydroxide ion
 Positively charged hydrogen ion

3. Unstable ions look for electrons to stabilise themselves

4. Bacteria has lower ion concentration and attracts highly concentrated H⁺ and OH⁻ ions

5. The ions rush in and break through the bacteria's cell wall, thereby killing it

H₂O Water

Bacteria's cell

Bacteria
Management

• Microdacyn Hydrogel – external wound / skin
 – Every 2-3 days
• Microdacyn solution – abscess cavity / fistula
 – BD – TDS irrigation

Outcome

• 31/35 healed
• 4/35 improved
OCF / PCF

- No malodour
- 50% - no antibiotics
- 8/8 100% heal rate
- Less than 14 days
- No return to theatre
A – 18/12/2015 microdcayn irrigation commenced
B – 21/12/2015 3 days post treatment
C - 26/01/2016 – OPC follow up

Post Auricular Abscess – quite a large area
Microdacyn irrigation 150 mls every dressing change
M/W/F
Day 0

Day 12
A & B - prior to commencing microdacyn hydrogel
13/04/2016
C - 14/04/2016 – a day after treatment

Microdacyn hydrogel spray 4x a day
Post op Radiotherapy burns
Topical hypochlorite ameliorates NF-κB–mediated skin diseases in mice

Thomas H. Leung,1,2 Lillian F. Zhang,1 Jing Wang,1 Shoucheng Ning,3 Susan J. Knox,3 and Seung K. Kim1,4,5

1Department of Developmental Biology, 2Department of Dermatology, 3Department of Radiation Oncology, 4Howard Hughes Medical Institute, and 5Department of Medicine, Oncology Division, Stanford University School of Medicine, Stanford, California, USA.

Nuclear factor-κB (NF-κB) regulates cellular responses to inflammation and aging, and alterations in NF-κB signaling underlie the pathogenesis of multiple human diseases. Effective clinical therapeutics targeting this pathway remain unavailable. In primary human keratinocytes, we found that hypochlorite (HOCl) reversibly inhibited the expression of CCL2 and SOD2, two NF-κB–dependent genes. In cultured cells, HOCl inhibited the activity of inhibitor of NF-κB kinase (IKK), a key regulator of NF-κB activation, by oxidizing cysteine residues Cys114 and Cys115. In NF-κB reporter mice, topical HOCl reduced LPS-induced NF-κB signaling in skin. We further evaluated topical HOCl use in two mouse models of NF-κB–driven epidermal disease. For mice with acute radiation dermatitis, topical HOCl inhibited the expression of NF-κB–dependent genes, decreased disease severity, and prevented skin ulceration. In aged mice, topical HOCl attenuated age-dependent production of p16INK4a and expression of the DNA repair gene Rad50. Additionally, skin of aged HOCl-treated mice acquired enhanced epidermal thickness and proliferation, comparable to skin in juvenile animals. These data suggest that topical HOCl reduces NF-κB–mediated epidermal pathology in radiation dermatitis and skin aging through IKK modulation and motivate the exploration of HOCl use for clinical aims.
References

References

